

EFFECT OF MALTING PERIODS ON THE CHEMICAL AND ANTINUTRIENT CONTENTS OF MUNG BEAN (Vigna radiata) ORARUDI

FLOUR

Presented by

E.U. Onwurafor, J.C. Onweluzo, I.L. Umunnakwe

Department of Food Science and Technology, University of Nigeria, Nsukka

BACKGROUND

>Legumes occupy an important place in the diets of the populations in the developing countries

Legumes are rich sources of protein, calories, minerals and vitamins

> Several bioactive compounds in legumes has some health benefits.

> legumes also serve as low cost supplement for animal protein among low income groups in developing countries

NUS 2013

Background cont'd

1.Mung has low profile of uses in Nigeria

- 2.Value added product potentials from mung beans in some regions exist
- -Mung beans has been used in some regions like Asia, Indian etc in processing of some valueadded products example-Dhal, transparent noddle among etc.

Figure 3

Background cont'd

Possible limitations in the utilization of mung beans(orarudi) in product development includes:
>High Antinuritional factors
>High Viscosity of the Gruel from the flour
>Low Bioavailability of Nutrients

➤Malting has been identified as simple traditional food processing technique for improving nutrient contents of plant foods and could

>Improve the functional properties of foods

>Promote the development of hydrolytic enzymeamylases, proteases etc

>Improve the digestibility of proteins

➢Improve bioavailability of nutrients among others.

>Flours from legumes malted for different periods may perform differently in product development

on:

Objective of the Study

1.To determine the effect of malting periods

>Chemical composition of Vigna radiata flour/malt

>Antinutrient contents of Vigna radiata flour/malt

2. To determine the optimal malting period for mung bean(Vigna radiata).

Analyses

≻Tannins(Buns,1971)

≻Phytate (Latta and Eskin, 1980)

≻Oxalate (Fasset *et al.*, 1973)

➢ pH determination: This was carried out using the method described by Onwuka (2005)

≻Titratable acidity determination: This was carried out by using the method described by Pearson (1976)

➢Minerals(Calcium, Iron, zinc, copper, magnesium, phosphorous, sodium and potassium contents(AACC, 2000) using Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES)- (Model Perkins-Elmer Optima 5300UV)

≻Vitamin A and B1 (Arroyave *et al.*,1982 and AOAC,2010)

➤The result was analysed using ANOVA and Duncan's multiple range test was used to separate the means. Significance was accepted at p<0.05 levels.</p>

Table 1: Proximate composition (%/100g) of mung bean (Orarudi) malted for different periods

Malting period/h	Moisture	Protein	Crude Fat	Crude fibre	Ash	Carbohyd rates
0	6.58 ^e ±0.14	30.77 ^e ±0.0 4	4.61 ^a ±0.01	3.11°±0.04	1.95 ^d ±0.00	52.94 ^a ±0.0 0
24	9.19 ^d ±0.02	32.54 ^c ±0.0 4	1.36 ^b ±0.01	3.44°±0.05	2.75 ^e ±0.26	50.72 ^b ±0.2 7
48	9.79°±0.13	33.50 ^b ±0.1 2	1.16 ^d ±0.01	3.57 ^b ±0.02	3.29°±0.14	48.69 ^d ±0.1 4
72	10.10 ^b ±0.1 4	34.47 ^a ±0.0 6	1.22°±0.02	3.63 ^a ±0.24	4.33 ^a ±0.00	46.25°±0.0 0
96	11.45 ^a ±0.1 2	31.47 ^d ±0.0 1	0.52°±0.00	3.49°±0.05	4.14 ^b ±0.03	48.93°±0.1 9

Values are the means ±SEM of triplicate samples. Means carrying different superscripts in the same row were significantly different (p<0.05)

Proximate composition continued

- > Mung bean contain high levels of protein, ash and carbohydrate
- Malting of mung bean significantly(p<0.05) increased the protein, ash and crude fibre contents
- Fat and carbohydrate content decreased as malting period was increased

Table 2: Mineral contents(mg/100g) of Vigna radiata(orarudi) malt

Constituent	0	24	48	72	96
S					
Calcium	98.46 ^d ±1.02	100.52°±0.00	101.74 ^{bc} ±0.01	122.00°±0.08	102.98 ^b ±0.45
Zinc	5.16 ^b ±0.03	4.71°±0.00	4.60 ^d ±0.00	5.31 ^a ±0.00	3.82°±0.03
Iron	8.06 ^b ±0.04	7.88 ^b ±0.06	7.84 ^b ±0.04	11.02 ^a ±0.79	10.99ª±0.08
copper	0.73 ^d ±0.00	0.73 ^d ±0.00	0.77 ^c ±0.00	0.92 ^a ±0.02	0.79 ^b ±0.02
Sodium	5.47 ^{bc} ±0.17	5.26 ^{cd} ±0.02	5.11 ^d ±0.02	7.07 ^a ±0.19	5.63 ^b ±0.4
Potassium	1147.80 ^d ±1.05	1148.89 ^d ±0.00	1270.21°±2.84	1376.78 ^a ±6.82	1304.98 ^b ±0.69
Phosphorus	261.06 ^d ±1.49	262.55 ^d ±0.00	274.88°±0.05	312.99ª±0.54	288.87 ^b ±2.68
Magnesium	147.03°±0.51	147.54°±0.00	166.42 ^b ±0.56	187.31 ^a ±0.45	165.15 ^b ±1.60
VitaminA (µgRE/100g)	43.7 ^a ±0.02	54.6 ^b ±0.00	65.5°±0.00	109.2°±0.00	163.8d±0.00
Vitamin B1(mg/100g)	4.6ª±0.01	5.3 ^b ±0.00	6.7°±0.00	7.7 ^d ±0.02	10.5°±0.01

Values are the means ±SEM of triplicate samples. Means carrying different superscripts in the same row were significantly different (p<0.05)

Mineral content Discussion

- Ca, Cu, K, P, and Mg increased progressively at a significant levels(p<0.05) as malting period was increased
- Zinc, iron and sodium decreased for the 1st 48 h and then increased at 72h
- > 72 h malt contained the highest value of iron, zinc and sodium
- > Vitamin A and B1 content of mung bean was low but increased with malting periods

Table3: Antinutrient Contents Of Vigna radiata(Orarudi) Malt				
Malting period/hr	Tannin	phytate	Oxalate	
0	475.75 ^a ±3.53	87.10 ^a ±0.35	624.00 ^a ±1.14	
24	384.50 ^b ±4.94	71.10 ^b ±0.14	419.50 ^b ±3.53	
48	213.50°±4.94	62.25°±0.21	310.50°±1.20	
72	220.00 ^d ±5.65	41.21 ^d ±0.09	146.00 ^d ±2.82	
96	231.00°±4.24	16.05°±0.07	79.00 ^e ±2.82	

Values are the means ±SEM of triplicate samples. Means carrying different superscripts in the same row were significantly different (p<0.05)

Malting periods resulted to between
19.18-57.40% reduction in tannin content
11.48-81.57% reduction in phytates content
32.77-87.34% reduction in oxalate content
Level of antinutrient reduction could account for high mineral content of the malt

Table4: pH and Titratable Acidity of (Vigna radiata) (orarud) malt

Malting Derioda/hr	pН	Titratable
Perious/IIr		Aclaity
0	6.8	0.057
24	6.5	0.069
48	6.0	0.078
72	5.7	0.100
96	5.1	0.143

Discussion contd

- The results revealed a gradual decrease in pH from 6.8 in unmalted mungbean flour to 5.1 in mungbean malted for 96 hours.
- The total titratable acidity for unmalted mung bean flour was 0.057% which gradually increased to 0.143% mungbean malted for 96 hours.

Conclusion

- Increasing the malting periods to 72h resulted to highest increase in all the mineral, protein, ash and crude fibre contents studied
- >Highest reduction in antinutrient occurred at the 96h malt which differed not significantly(p>0.05) from 72h malt
- Malting of mung bean for 72 h should be encouraged at the community levels to increase the nutrient in content and availability.

Recommendations

- Researchers should focus more attention on communityoriented mung bean research that will have practical impact in the lives of the rural and urban poor in the society.
- Sovernmental and non governmental agencies should map out policies and programmes especially for the women on the use of malting to enhance nutrient content of mung bean and its nutritional/health benefits.
- > Utilization of mung bean malt in product Development /value addition creation beyond cooking and eating need to be encouraged in Nigeria and other African countries.

Acknowledgement

The authors wish to acknowledge the USDA through the Norman E. Borlaug Fellowship program who funded part of this research work and the CTA/Bioversity International who sponsored my being here.

