

Evaluation of the nutrient and health potentials of wild and cultivated trifoliate yam (Dioscorea dumetorum) in Nigeria.

Ezeocha, V.C. and Ojimelukwe, P.C. avezeocha@yahoo.com

Introduction

- •Nigeria is endowed with sustainable food security crops, however most of these crops are underexploited.
- •Trifoliate yam (*Dioscorea dumetorum pax*) is an underutilized crop with high food potential.
- •Trifoliate yam, belongs to the genus Dioscorea and family *Dioscoreaceae*
- •Dioscorea dumetorum has not been widely studied.
- •Dioscorea dumetorum (Trifoliate yam) consists of wild and cultivated cultivars.

- •Some of the factors militating against increased trifoliate yam production in Nigeria are:
- >Lack of knowledge on its composition
- long cooking time associated with the tuber
- >severe hardening which develops after harvest
- high concentration of anti-nutrient factors leading to bitterness and toxicity
- > lack of diversified utilization of the crop.

Problem statement

•D. dumetorum is regarded as underutilized crop partly due to lack of detailed information on its compositional analysis.

Objectives

 This study investigates the nutritional and health potentials and opportunities of D. dumetorum.

Importance of study

•This study will be useful for potential uses of the tuber in the food industry, animal feed industry and cosmetic or pharmaceutical industry.

Materials and Methods

- Dioscorea dumetorum (wild and cultivated) tubers were obtained from National Root Crops Research Institute, Umudike.
- Proximate composition was determined with the AOAC (1990) method.
- Anti-nutrient factors were determined with the method of Obadoni and Ochuko (2001).
- Compounds present in the soxhlet ethanol extract were identified by GC-MS analysis using a GC-MS-QP2010 PLUS Shimadzu.

Results and Discussion

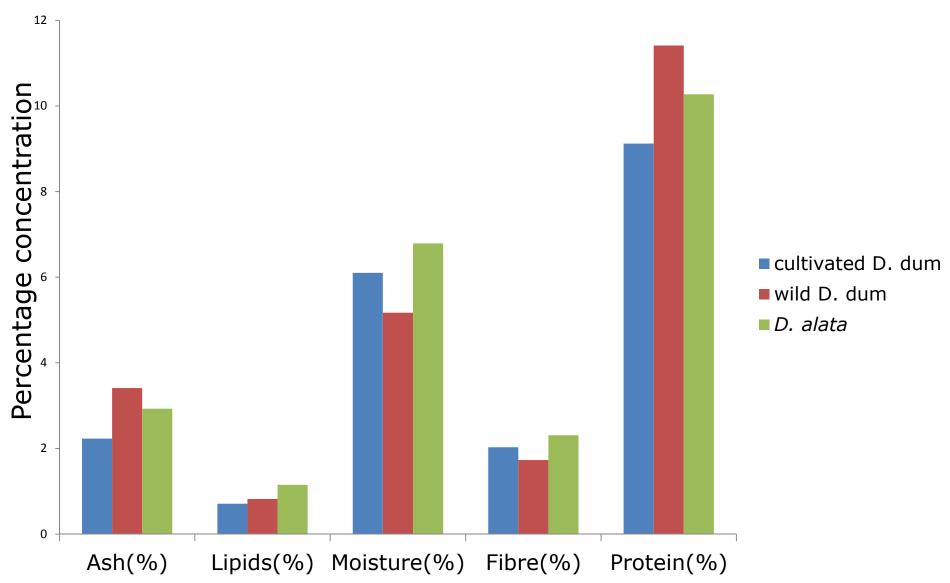


Figure 1: Comparative assessment of the nutrient composition of *D. dumetorum and D. alata*.

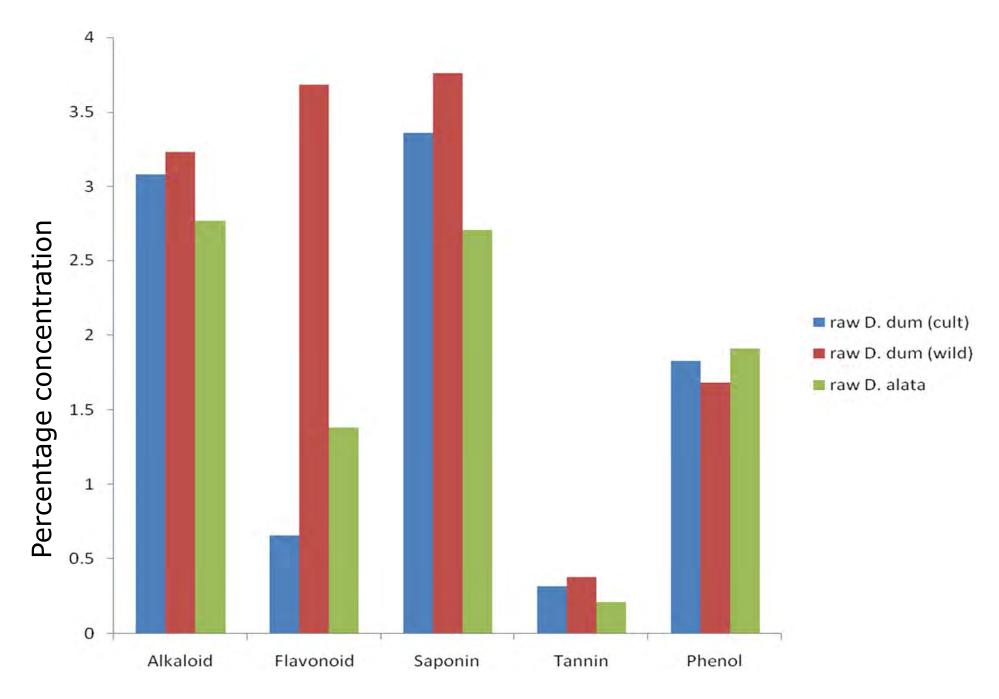


Figure 2: Anti-nutrient composition of *D. dumetorum* and *D. alata*.

Phytochemical components of Dioscorea dumetorum

Compounds	Ret. Time	D. dum (cult)	D. dum (wild)
Fatty acids			
Lauric acid	25.77	0.56	nd
Myristic acid	29.91	2.25	nd
n-pentadecylic acid	31.35	5.59	nd
Palmitic acid	32.59	21.82	10.83
cis-oleic acid	22.67	10.95	nd
Phenols			
3.5-Di-t-butyl phenol	23.63	1.18	1.47
3-Decanone.5-hydroxyl-1-	35.59	nd	3.38
(4-hydroxy-3-methoxyphenyl)			
Sterols			
17-(1,5-Dimethyl hexyl-10,13-dimethyl	44.55	5.63	4.47
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17			
Fetradecahydro-/H-cyclo-penta[a]phenanthren-3-ol			
Aldehydes and ketones			
vanillyl acetone	27.075	nd	0.64
Alcohols			
9.12-octadecadien-1-ol	34.46	33.52	19.81
Hydrocarbons			
1-methyl-2-piperidinyl)methane	32.11	nd	19.16
Prntadec-1-ene	26.87	nd	0.7
Esters			
2-Hydroxy-1-(hydroxymethyl)ethyl ester	38.85	6.15	nd
Glycerol-1-monolinoleate	38.85	6.39	nd
Palmitic acid beta monoglyceride	37.46	6.07	nd
Methyl(13E,16E)-octadecadienoate	34.29	0.53	nd
Amines			
Dleic acid amide	36.23	1.12	1.92
Alkaloid			
Decahydro{1,7}naphthyridine	30.66	nd	21.09

- •Compounds identified: fatty acids and their esters, phenols, sterols, aldehydes and ketones, hydrocarbons and amines.
- •Fatty acids:Oleic acid, Palmitic acid, lauric acid, n-Pentadecylic acid and 1-Tridecane carboxylic.
- •Phenols: 3,5, Di-t-butyl phenol and 3-Decanone-5-hydroxy-1-(4-hydroxy-3methoxyphenyl)

Ketone: Vanillyl acetone reported as an antioxidant.

• Sterol: 17-(1,5-dimethyl hexyl-10-13 dimethyl-1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 -tetradecahydro-/H-cyclo-penta[a] phenanthren-3-ol.

Alkaloid: Decahydro{1,7} naphthyridine

Conclusion

• The results obtained from the work showed that Dioscorea dumetorum (both wild and cultivated cultivar) has high potential in contributing to food security and wellness in Nigeria.

Recommendation

- Programmes aimed at educating people on the potential value of these crops will help to improve people's perception of the crop.
- There should be more public and private sector investment on the production of the species.
- More funding of research specifically targeted at conserving and adding value to this underutilized specie is recommended.

Acknowledgement

•This is part of a project funded by International Foundation for science (IFS).

