

Tshwane University of Technology

We empower people

Folasayo T. Fayose¹ and Zhongjie Huan²

3rd International Conference on

Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.

¹<u>FayoseFT@tut.ac.za, ²huanz@tut.ac.za</u>

Introduction

□ South Africa has nutritious minor crops that can be referred to as been neglected e.g. canola and

amaranths.

- □ These crops possess high moisture content which ought to be reduced to prevent losses.
- Drying is indispensable but energy intensive and different crops require drying techniques.

Air temperature less or above the environmental temperature

□ Heat pump drying technology has unique importance for drying of high-quality temperature-sensitive products as well as being environmentally friendly but it is misconstrued by would be users. This paper tried to divulge the principles and potentials of heat pump drying technology and the

conditions for its optimum use for Neglected and Under utilized Species (NUS).

Classification of Heat Pump Dryers

Features of Heat Pump Dryers

Drying in a non-vented camber using modified drying atmosphere/

Fig 2: HP Dryer Contribution to Product Quality

Improved Texture

Performance Indicators of Heat Pump Drying Systems

□ Coefficient of Performance (COP_{HPD})

Specific Moisture Extraction Rate (SMER) $SMER = COP_{HPD} \cdot \frac{\Delta x}{\Delta h} [kg/kWh] \dots (2)$

Drying Rate

 $DR = \frac{m_t - m_{t+\Delta t}}{\Delta t}$ -----(3) Drying Efficiency

Where Q_{H} : heat rejected at the condenser Wc: Energy consumption by a compressor, W_f: work input to the fan/blower [kJ],

∧ x: amount of removed water [kg] Δ h: amount of energy consumed [kJ]

m_t: the mass at time t.

 T_1 : the inlet (Righ) air temperature into the dryer, T_2 : the outlet air temperature from the dryer, T_a : the ambient air temperature.

(% RH)		depending on		
		temperature		
Dryer Efficiency (%)*	Up to 95	35-40	Up to 70	Very low
Product quality	Very good	Average	Good	Excellent
Capital cost	Moderate	Low	High	Very high
Drying rate	Faster	Average	Very slow	Very slow
Operating cost	Low	High	Very High	Very high
Control	Very good	Moderate	Good	Good

Conclusion

Heat pump drying technology offers exceptional advantages for drying food products that are highly prone to change, especially where humidity environment low is required and energy efficiency is a significant advantage.

References

Chaughule, V.A. and Thorat, B.N. (2011). Food Extrusion: Emerging Technology for Food Processing in 21st Century, In Jangam, S. V., Law, C. L. and A. S. Mujumdar, A. S. (ed.) Drying of Foods, Vegetables and Fruits, ISBN: 978-981-08-9426-9, http://serve.me.nus.edu.sg/arun.

Mujumdar A. S., Jangam, S. V, 2011. Energy issues and use of renewable source of energy for drying of foods, International Workshop on Drying of Food and Biomaterials, Bangkok, June 6–7, 2011.