

RESEARCH PROGRAM ON Climate Change, Agriculture and Food Security

Methodology mapping for resilient production systems: approaches and results from surveys in Bolivia, India, and Nepal G. Meldrum*, S. Sthapit, W. Rojas, I.O.E. King, and S. Padulosi September 26, 2013

In partnership with:

RESEARCH PROGRAM ON Climate Change, Agriculture and Food Security

Enabling poor rural people to overcome poverty

Climate Change and Agricultural Biodiversity

Changes in weather could have grave consequences for food security

Adaptation will require conservation & strategic use of agricultural biodiversity (e.g. planting new crops and/or varieties, adapting current materials)

On-farm conservation of local crops and varieties is an essential component of adaptation

Women and children in a field in Bihar, India Photo by D. Graetzer

Farmers Perspectives

Farmers are central actors in on-farm conservation and the adaptation of agricultural production

Their perspectives on climate change and the actions they take to cope are critical to gain insight on what is happening on the ground and what support is needed

Arborist prunes an apple tree in Hawaii Photo by the Honolulu Advertiser

Farmer Survey

Survey Locations

Maps of Bolivia and India from Google Maps

Survey Participants

	Bolivia	Nepal	India
Sample Size	234	1171	989
Women (%)	53	47	40

Farm Profiles

(%)	Bolivia	Nepal	India
(70)			
Irrigation	23	74	36
Hire Workers	29	52	28
Tractor/Vehicle	11	11	20
Livestock	94	90	85

Perceptions of Climate Change

	Bolivia	Nepal	India
Noted weather change in last 20 years (%)	92	80	99

Impacts of Climate Change

Bolivia	Nepal	India

Actions Taken to Cope with Climate Change

	Bolivia	Nepal	India
Action taken to cope with climate change (%)	56	39	88

The Effect of Information

	Bolivia	Nepal	India
Informed about climate change and its risks (%)	34	34	10*
Major Sources of Info:	Radio Municipality NGOs	Media (Radio, TV) Friends & Relatives NGOs	(Few listed) Research Org Ministry of Agri

Climate Change Resistant Crops

Cro	p Indicated (%)	Bolivia	Nepal	India
	Potato Variety HH Variety Luki	76 5 1		
	Wheat Variety NL297		21 12	6
	Rice Variety 1442		20 5	26
	Maize		8	29
	Barley	11	8	16
	Quinoa	28		
	Finger Millet		8	33
	Kodo Millet			21
	Small Millet			10
	Litchi		31	

Farmer Survey

NAMES OF STREET REPRESE REPRESE

NAMES OF

N P

Summary

Almost all farmers interviewed in Bolivia, India, and Nepal (89%) had noticed a change in the weather

Changes noted were increased temperature and shifts in timing and amount of precipitation, resulting in increased incidence of drought in Nepal and India

Declining yields and food insecurity were a major impact in all three countries

Cochabamba, Bolivia Photo by P. Bordoni

Summary

Farmers actions to cope with climate change often included planting new crops and varieties

Several NUS crops were noted by farmers to be resistant to changing climatic conditions. In particular, quinoa in Bolivia and minor millets in Nepal and India. Barley was also noted to be resistant to climate change by farmers in all three countries

Many farmers also recognized dominant crops (e.g. Potato and Rice) as resistant to climate change, including both modern and traditional varieties

Policy Implications

These are preliminary results and require some deeper reflection before making conclusive policy recommendations

However, it would be advisable to maintain intra-specific diversity in crops identified as resistant by the farmers to ensure that we have the material needed to realize the potential of these species. Policy makers should direct resources and attention to this effort!

Furthermore, we should Increase consultation and collaboration with local farmers in crop conservation and breeding as they are central actors in crop conservation and climate change adaptation

Future Directions

More fine-scale analysis, looking at regional differences within countries and the relation of results to socio-economic factors, especially gender

Will also be considering more closely the shift in the crop composition that comes with climate change in all three locations and the implications of this shift, particularly as it likely includes a loss of overall crop diversity

Women dry taro leaves in Nepal Photo by G. Meldrum

Many Thanks!

To the farmers who kindly gave us their time to answer our questions To our partner organizations who carried out the surveys:

To PAR, Paul Bordoni, and Ximena Cadima for the data from Cochabamba

To Stefano Padulosi and others who designed the survey

To our funding partners:

And all those whose photos were included in this talk

www.bioversityinternational.org

