Sustaining Frafra Potato (*Solenostemon rotundifolius* Poir.) in the Food Chain; Current Opportunities in Ghana

By I <mark>Sugri</mark>, F Kusi, RAL Kanton, SK Nutsugah, M Zakaria

CSIR-Savanna Agricultural Research Institute, Manga Agriculture Station P.O. Box 46 Bawku, UER-Ghana.

Presented at the 3rd International Conference on Neglected and Underutilized Species (NUS): for a Foodsecure Africa, 25 – 27 September 2013, Mensvic Grand Hotel, Accra, Ghana

Biology and Botany

Solenostemon rotundifolius Poir. Family: Labiatae (Tindall, 1983)

Plectranthus esculentus (Kyesmu and Akueshi, 1989)

Coleus dysentericus (Tindall, 1983)

Coleus rotundifolius (Vasudevan and Jos 1989; Bejoy et al. 1990; Mohankumar et al. 1990)

Coleus parviflorus (Yayock et al. 1988; Abbiw, 1990).

INTRODUCTION

- Under-exploited food crop in the Upper East and Upper West Regions of Ghana (Dittoh *et al.* 1998; Benett-Lartey, 2008).
- Major Production Districts: Jirapa, Lambussie, Nadowli, Lawra, Nandom and Wa of UWR; and Bongo, Kassena-Nankana, Bolga, Bawku-West and Bawku-East of UER (Tetteh and Gou, 1997; Dittoh *et al.* 1998; Bayorbor and Gumah, 2007).
- Production is primarily planned for household consumption; contributing up to 20% of household food between October to December.

Earlier studies by Tetteh and Guo (1997) and Dittoh (1998), noted that FP is becoming endangered in many communities.

They Identified critical problems and intervention programmes for FP

- Threat of genetic erosion by close substitutes (gradually replaced by high yielding sweet potato varieties (Benett-Lartey, 2008)
- This lead to some research and other technology deployment under the RTIM Project from 1999 to date.

Some Research highlights so far

- Response of genotypes to fertilizer (NPK) and time of planting (Quainoo and Bayorbor, 2002);
- Effect of seed weight and spacing on yield (Bayorbor and Gumah, 2007)
- Integrated pests management strategies (Tanzubil et al., 2005)
- Germplasm collection and characterization of different accessions (Opoku-Agyeman *et al.* 2007).
- Potential of vegetative propagation methods Aculey et al., (2011)

Initial plant establishment is usually slow which requires several weeding

By 10 week after planting, plant canopy usually spread to cover entire ridges, only rouge out weeds by hand. Spray with appropriate chemical to control soil arthropods

Utilization

Tubers are mostly boiled and consumed as main meal or snack

Tubers turn fibrous (dormancy) By 3MAS

- Boiled before peeling and eaten alone or with a sauce
- Peeled before boiling: Some oil and spices are usually added and the food served to the family.
- Over-boiled and stirred into a thick mass called 'piese sam', which is consumed with stew or sauce.
- Larger tuber are selected, parboiled or blanched for storage. The tubers are sun-dried for future use.

Figure 2a . Frafra potato setts are mixed with ash, millet/sorghum husk and stored in clay pot sealed with cow-dung , pot is opened prior to planting.

Fig.2b Setts are wrapped in thatch and stored under shade of tree or summer hut

Objectives To review the current FP production systems and identify strategies to increase production and utilization.

 Identify how research-policy-extension linkages can accelerate production, technology dissemination and utilization of FP.

 Identify strategies to improve upon postharvest handling and processing, as well as training and research needs in the FP value chain. Study was carried out from May to June 2013, using field survey, key informant interviews and focused group discussions

Five main Producing districts and 10 main communities were selected

Methodology

80% of respondents ever cultivated FP in previous 1-4 years.

 The questionnaire captured information of type of variety, source of sett, reasons for selecting a variety, current challenges, possible training and research needs

		Numbers of	Number of	Name of
Districts	Communities	focus	respondents	Extension
		group		Agent
		discussions		
Bawku-East	Nikongo	1	25	A. Dominic
	Tes-Natinga	1	25	
Bawku-West	Tilli-Azupupuugu,	1	25	Paul Musah
	Teshie, Kperigu-	1	25	
	Soogo			
		1	30	
Bongo	Eyelibile			K. Anane
	Bongo-Soe	1	25	
		1	30	
Garu-	Kpatia			
Tempane	Tankpasi-Avusum	1	25	M. Jamal-Deen
Talensi-	Sakote-Kotitab	1	30	Musah Adam
Nabdam				
	Dasabligo	1	30	
Total = 5	10	10	270	

Table 2: Overall ranking of crops according to their contribution to household livelihoods

	Average	% HH	Relative	Overall	Overall	Access to
Crop	farm size	cultivating	involvement	contribution	contribution	improved
	(ha)		of Women	to food	to income	varieties
<mark>Maize</mark>	<mark>2.5</mark>	<mark>95</mark>	<mark>45</mark>	<mark>80</mark>	<mark>55</mark>	<mark>90</mark>
Sorghum	1.5	90	20	70	40	40
Millet	1.5	90	20	65	35	20
Rice	0.8	60	80	40	60	60
Cowpea	1	70	40	40	50	70
<mark>Soybean</mark>	1	<mark>65</mark>	<mark>75</mark>	<mark>30</mark>	<mark>70</mark>	<mark>60</mark>
Groundnut	1	60	60	50	30	20
Bambara nut	0.5	40	50	40	15	10
<mark>Sweet potato</mark>	<mark>0.9</mark>	<mark>40</mark>	<mark>15</mark>	<mark>30</mark>	<mark>70</mark>	<mark>40</mark>
Frafra potato	<mark>0.25</mark>	<mark>30</mark>	5	<mark>20</mark>	<mark>15</mark>	5
Vegetables	0.9	70	70	40	80	50

Table 3: Characteristics of common Frafra potato varieties

by respondents

	Vai	rieties		
Characteristics	Black type	<mark>Red type</mark>	<mark>White type</mark>	
Colour	Black peel, white	Red peel, white	White peel and	
	flesh	flesh	flesh	
Maturity	4-5 months	4-5 months	4-5 months	
Yield	Yield higher	Moderate yield	Moderate yield	
Potential yield	12 to 20 bags/ha	9 to 16 bags/ha	9 to 16 bags/ha	
Consumer	Most preferred (size)	Preferred	Preferred	
preference				
Taste	Very good	Good	Good	
Tuber size	Large	Medium	Medium	
Soil fertility	Widely adapted	Poorly adapted	Moderately	
			adapted	
Market value	High	Moderate	Moderate	
Ease of peeling	Easy to peel	Difficult to peel	Easy to peel	
Storage shelf life	Poor	Good	Good	
Dry weight	High dry moisture	Watery flesh	Less moisture	

Table 4: Overall ranking of critical constraints in

Frafra potato production

Identified constraints	Matrix	Overall
	ranking	rank
Lack of elite varieties	* * * * * *	7
Labour-intensive operations	* * * * *	6
Poor soil fertility	* * * * *	5
Low yield	* * * *	4
High postharvest losses	* * *	3
Lack of planting materials	* *	2
Pest and diseases	* *	2
Limited market access	*	1

Farmers were first asked to identify the important constraints, and further rank the identified

constraints from most important to least important.

Current research Interventions

 Both adaptive trials and FFS on GAP for FP (agronomy, PVS, IPM, Intercropping, ISFM and postharvest managements) is ongoing under various RTIMP and WAAPP programmes

 Germplam conservation and characterization of cultivated morphotypes of FP is ongoing at CSIR-PGRRI, and CSIR-SARI

Table 5a: rapid appraisal of crop improvement targets requiring

research and extension in Frafra potato

Areas requiring improvement	Target areas	What specific improvement is required
1. Crop improvement	All varieties	Replace the existing 3 landraces
2. Production practices	Extension	Disseminate agronomic technologies to improve yield
3. Genetic conservation	Research	Germplasm collection, characterization and conservation
4. Vegetative, molecular and In-vitro techniques	Research	Molecular, budding, and approach, cleft and splice grafting methods,
5. Maturity period	All varieties	Reduce maturity from 4-5 months to 3 months
6. Taste	All varieties	Increase sweetness and starch level, reduce moisture content of red type
7. Size	All varieties	Genetic methods to increase tuber size

Table 5b: rapid appraisal of crop improvement targets requiring

research and extension in Frafra potato

8.Agronomic practices	Extension	Cultivar selection, time of planting, spacing, fertilizer rate
9. Ease of peeling	All varieties	Peel should be easy to rape off
10. Sensory colour	Black type	More bright-colour sensory appeal, orange- colour flesh
11. Fibrousness	All varieties	Eliminate or increase natural dormancy period
12. Shelf life	All, black type	Introduce improved storage and processing methods
13. Nutritional	Research	Bio-fortification with vitamins, orange-flesh colour
14. Utilization	Extension	Increase awareness and utilization among consumers
15. Value addition	Processing	Evaluate parboiling, blanching, dehydration, roasting and frying options, packaging
16. Training	Extension	Good Agricultural Practices (agronomy, pest management, soil fertility and postharvest managements

FP faces genetic erosion from its close substitute, sweet potato, which much easier to cultivate

However, interventions to achieve household food security should not rely on only few major staples crops

Specific NUS need to be indentified in national agricultural food policies, this should emanate from district work-plans of where they are utilized. CSIR-SARI, CSIR-PGRRI and the UE and UW Regional Directorates of Agriculture need to collaborate to accelerate research and technology dissemination on FP

 There is need synchronize interventions by WAAPP 2A and RTIMP to achieve reasonable success.

 Processing tubers into stable preservable products using low-cost roasting, blanching and drying methods should be evaluated.

Thank You

