

Tamarind density and distribution: evaluation for climate change adaptation

Dr. ir. Sali Bourou; Dr. Macoumba Diouf & Prof. Dr. ir. Patrick Van Damme

International Conference on NUS, Accra-GHANA 2013

Outline

- General introduction
- Objectives
- **4** Hypothesis
- Material and Methods
- Results
- **4** Discussions & Conclusions
- Recommendations

Introduction...1/4

<u>Tamarind</u>

Order: Fabales

Family: Fabaceae

Genus: Tamarindus

Species: indica

Tamarind: Tamarindus indica L.

Reproductive organs

Tamarind fruit

Introduction...2/4

Introduction...3/4

Production and distribution areas (El-Siddig et al., 2006; Bowe, 2007)

Figure 1.1: Tamarind distribution

 Table 1.1: Tamarind production in 2005 (EI-Siddig et al., 2006)

Continent	Producing countries	Quantity produced (t/y)	Importing countries of tamarind
Asia	India	300,000	Pakistan
	Thailand	140,000	Arabic countries
	Costa Rica	220	Europe (UE)
America	Mexico	37	North America
	Puerto Rico	23	(USA, Canada)

Agro-ecological map of Senegal

Objectives

Evaluate current density and predict future distribution of tamarind in Senegal:

- density evaluation in relation to the habitats
- actual distribution of tamarind
- future distribution and climate change effects

Hypothesis

Observed climate change in Senegal (rainfall and temperature curves changes, etc..) can influence current and future presence/distribution of tamarind

Material and methods...1/4

Prevalence sites of tamarind were observed and recorded across Senegal

□ Tamarind density (number of trees per km²) around 30 villages was measured across Senegal

Choice of 30 sites was done randomly on all sites visited (489) in the three agro-ecological zones.

Material and methods...2/4

Tamarind density

Figure 1.3: Transect method (Assogbadjo et al., 2005)

Material and methods...3/4

Distribution and climate change effects

Material and methods...4/4

MAXENT

Results...1/3

Agro-ecological zones

Results...2/3

The most important climatic variables

- □ Isothermality (BIO3),
- □ Maximum temperature of warmest month (BIO5),
- □ Precipitation of wettest month (BIO13)
- □ Precipitation seasonality (BIO15)

Results...3/3

Tamarind distribution

Lessons learned/Conclusion

Tamarind population density per agro-ecological zone is known and evaluated.

The most important climatic variables for tamarind development are estimated and modeled.

Occurrence probability of tamarind is known to reduce with time (2050 and 2080). Tamarind prevalence will reduce greatly by 2080 in Senegal.

Peanut basin was observed to be a future refuge area of tamarind in Senegal.

Finally, Senegalese policymakers should undertake concrete actions for the conservation and sustainable management of *T*. *indica* (Law nr 98/03 of 08 January 1998)

FACULTY OF BIOSCIENCE ENGINEERING

IRAD

Thanks for your kind attention !!

Institut Sénégalais de Recherches Agricoles

Deutscher Akademischer Austausch Dienst Office allemand d'échanges universitaires

