

A Diversity of Methods and Tools

- · Econometric methods;
- Optimization models (including weitzman);
- Monte carlo simulations;
- Search theoretic frameworks;
- Contingent valuation and choice experiments;
- Experimental games
- Production loss, opportunity cost, least-cost and safe minimum standards methods;
- · Economic surplus methods;
- Cross-sectional farm and household methods;
- Farm simulation and breeding programme evaluation;
- Use of genetic production functions
- Application of economic methods, decision-support tools & policy intervention strategies needed to support ABD conservation policy design & implementation that is cost-efficient and pro-poor.
- Implementation requires an accompanying programme of awareness-raising and national capacity building.

Improving lives through biodiversity research

Policy Relevance – Types of questions such research can be expected to answer

- Which species/varieties or breeds should be conservation priorities (given that we cannot save everything)?
- What are the **costs of ABD conservation** programmes and how can we minimise these? What are the related benefits?
- How important are particular local species/varieties or breeds to livelihoods and how can such values be harnessed to support poverty alleviation efforts?
- Which traits and functions (both marketed and nonmarketed) are the most important and degree they can be traded off against each other?

3. How to identify least cost conservation service providers? Competitive Tender Approach

- Good understanding of farmer opportunity costs fundamental to incentive setting and determining total conservation resources required.
- But existence of asymmetric information (only farmers know their true opportunity costs, not incentive setting conservation agency)
- Competitive tender schemes using auction-based mechanisms allow conservation costs to be minimised and hence more to be conserved.
- · Conservation tenders increasingly being applied in PES settings

Improving lives through biodiversity research

4. How to select service providers? Accounting for Trade-Offs

Potential outcomes evaluated concerning their:

- ecological effectiveness: reaching the conservation goal
- economic efficiency: least-cost conservation
- social equity: pro-poor outcomes
- Distribution of rewards is very sensitive to the selection approaches used.
- Equity may need to be sacrificed if cost-efficiency is the overarching goal. But this may impact likelihood of long term success.
- Articulation of a clear conservation goal, based on single criteria or combinations thereof is required

Bolivia/Peru Tender Process

- 9 varieties of quinoa identified as "at risk" :
 - Chillpi Blanco, Huallata, Hilo, Kanchis, NovetonMisa quinua, Chullpi anaranjado, Janko witulla, Cuchi wila.
- Based on expert opinion of area planted, # of farmers, degree of traditional knowledge, quantity of seed available, dissimilarity of the varieties)
- 39 organisations invited to submit a conservation service offer. Offers received from 25.
- Total conservation budget available = \$4,000 in each country (but goal should be to reach a safe minimum standard of conservation)
- Single round, sealed-bid reverse auction. Offers needed to specify:
 - Area to be planted for each variety
 - Number of farmers to be involved
 - Availability of seed
 - Compensation required

Example of trade-offs (Bolivia)					
Selection criteria (aim) Outcome	Aim 1: Max avg (across landraces) cost effectiveness (\$/ha)	Aim 2: Max. avg cost effectiveness (\$/farmer)	Aim 3: Max. avg. cost effectiveness (\$/CBO)	Aim: Max. Weighted avg. cost effectiveness across criteria (e.g., 0.4, 0.4, 0.2)	
Total area (outcome)	2.9 ha	0.6 ha	2.6 ha	2.6 ha.	
Total n. Farmers (outcome)	12 farmers	25 farmers	16 farmers	16 farmers	
Total n. CBOs (outcome)	4 CBOs	5 CBOs	8 CBOs	7 CBOs	
MAX ^{Improving lives} through bid in research MIN EFFICIENCY EFFICIENCY EFFICIENCY					

- Direct payment
- Loans
- Landrace or local breed subsidies

Financing PACS

- Payments/rewards may be in-kind, involving services and infrastructure that can be provided through existing govt. development programmes (inc. those related to poverty alleviation)
- Private sector involvement could be encouraged by:
 - appealing to corporate social responsibility
 - requiring agrobiodiversity impacts to be offset (drawing on concepts underlying BBOP = Business and Biodiversity Offset Program)
 - facilitating capture of premium prices through "ABD-friendly" labeling.
- Facilitate niche product market development of threatened PAGR with commercial potential.

